本文作者:linbin123456

央企信托-169江苏FN政信集合资金信托计划

linbin123456 2023-07-11 98
央企信托-169江苏FN政信集合资金信托计划摘要: 江苏阜宁:7.4%强绑定当地第一大、第二大平台,安全边际高,主体均为AA评级!【央企信托-169江苏FN政信集合资金信托计划】【基本要素】1.5亿/24月/自然季度付息(末月10号...
微信号:18321177950
添加微信好友, 获取更多信息
复制微信号
江苏阜宁:7.4%强绑定当地第一大、第二大平台,安全边际高,主体均为AA评级!
【央企信托-169江苏FN政信集合资金信托计划】
【基本要素】1.5亿/24月/自然季度付息(末月10号)100万-300万:7.2%-7.4%
【项目亮点】
当地第二大平台融资:发行方实控人为当地人民ZF,公司总资产198.94亿,总负债95.74亿元,资产负债率48.13%,主体评级AA,当地重要基建主体,业务稳定性和可持续性好。
当地第一大平台担保:担保方实控人为当地人民ZF,当地第一大平台,公司总资产214.60亿元,总负债138.88亿,资产负债率64.71%,主体评级AA,评级展望稳定。
FN属江苏YC市,区域经济发展强劲,全国百强县!2022年,FN县GDP700.17亿元,同比增长4.8%,分别高于全国、全省、全市1.8个、2.0个、0.2个百分点,增速居全市第4位,实现一般公共预算收入30.50亿元.

信托定融政信知识:

它导致混凝土性质改变(如动弹性模量降低)

    至于新拌混凝土受冻害损伤后则会导致混凝土冻胀破坏

    黄延高速公路第六合同段位于陕北地区,常年负温为130d左右,防治混凝土受冻害损伤在冬季施工中具有重大意义

         2、混凝土受冻害损伤有关原因     2.1 新拌水泥混凝土的受冻害损伤的原因     新拌混凝土的强度低、空隙率高、含水多,极易发生冻胀破坏

    冻胀破坏的外观特征是材料体内出现若干的冰夹层,彼此平行而垂直于热流方向

    其过程为:结构物表面降温冷却时,冷流向材料体内延伸,在深处某水平位置开始冻结,一般从较粗大孔穴中水分开始,冰晶形成后从间隙吸水,发育增长,且是不可逆转的过程,水分从材料未冻水或从外部水源补给,并进行宏观规模的移动

    第一层孔穴中冰冻后,在冰晶生长的过程中,材料质体受到拉应力σt,如果超过抗拉强度即破坏

         2.2 成熟混凝土受冻害损伤有关原因     混凝土构件中的孔径分为三个范畴,即凝胶孔、毛细孔及气泡,在某一固定负温下混凝土构件中水分只有一部分是可冻水,可冻水产生多余体积直接衡量冰冻破坏威力

         可冻水(即冰)主要集中在水泥石及骨料颗粒的毛细孔中,凝胶水由于表面的强大作用不大可能就地冻结,气泡水易冻结

    混凝土构件中各种孔径的空隙可认为连续分布,分布在这些空隙中的水在降温过程中将按顺序逐步冻结,不可能同时冻结

    冻水一般是温度的逆函数,温度愈低,可冻水愈多

         连续的毛细管沟网络体系破坏过程;随着水化进展凝胶体生成,网络的联系被破坏、分成个别孤立的毛细孔(水在其中冻结的容器),而凝胶连同其特征性凝胶孔和少数细小毛孔就构成透水器壁

    随着水化深入,材料质地致密及温度的下降,将有更多细小空间的水参与冰冻,作为器壁的凝胶的渗水性也不断减小

         当冰冻多余水受水压力推动向附近气泡(逃逸边界)排除时,材料本身将受到推移水分前进的后应反作用力导致受拉破坏

    材料组织愈致密水流宣泄不及,疏导不畅引起的动水压力增大

         水泥浆中包含的一般是盐类稀溶液,一旦冰冻后变为纯冰和浓度更高的溶液;随着温度下降,浓度不断提高

    另一方面邻近凝胶中水分始终保持不冻,其溶液浓度保持原有的水平,于是在毛细孔溶液和凝胶水之间出现浓度差

    浓度差使得溶剂向溶液中自发扩散渗透,即溶质向凝胶水中扩散,而凝胶水向毛细孔中浓溶液转移

    其结果毛细孔中水分增加,和冰接触的溶液稀释,冰晶逐渐生长,长大

    当毛细孔穴充满冰和溶液时,冰晶进一步生长必将产生膨胀压力,导致破坏

         另一方面在水压的情况下,水分冻结膨胀,多余水在压力推动下外流,流向可能消纳水分的未冻地点;作为水流的结果压力消失,析冰情况正好相反:水分不是从冰冻地点外流,而是从未冻地点(凝胶)流向已冻冰地点(毛细孔),方向恰好相反

    未冻地点的水移动一定距离后,最后以冰冻结束,作为水流运动的结果产生压力

         以上两点可以综合为:第一阶段毛细孔中始发的冰冻,向所有方向产生的水压力,引起内应力;第二阶段较大毛细孔中水分首先生成冰晶,可从小孔中吸引未冻结水使自身增长,产生静应力

         骨料作为一个组分,如果冰冻膨胀同样会成为导致混凝土破裂的应力来源;为了保证混凝土完好,必须要求骨料和水泥净浆两者都不破坏

    由于引气混凝土的广泛使用,水泥净浆的抗冻性较易保证;从这个意义上来说,骨料抗冻性更具有突出意义

    如颗粒大到一定限度以上,核心存在的距离任何逃逸边界均在临界尺寸以上的保水区域,此时将因超过骨料破裂强度的内部水压力而破裂,这就是临界储存效应

    凡属中等吸水、细孔结构、渗透较低的岩石,这种危险较突出;空隙多、渗透性强的骨料临界尺寸也很大

    在特殊情况岩石吸水率极低(如重量吸水在0.5%以下的石英岩),可冻水极少,冰水是无渗应力出现;根据施工经验应避免使用高度吸水骨料,小颗粒石粒可以得到较大抗冻保证

         综上所述,混凝土材料的抗冻性是以下三方面的变函数即:(1)材料的性质(强度、变形、空隙情况);(2)气候条件(冻融循环次数、最低温度、降温速度、降水量、空气相对湿度等);(3)材料使用方式(降水量、自由水及跨越材料的蒸气压梯度与温度梯度)

    区分这几方面变数将构成研究这一复杂问题的一个根本方式的转变,这样我们就有可能正确预言材料在指定环境中的抗冻能力

         3、利用抗冻理论在工程上应用     根据材料的抗冻性上述的函数,在施工实践 中采取的抗冻施工措施如下:     采取掺用防冻剂以降低新拌水泥混凝土的内部水溶液冰点以及干扰冰晶生长,有效保护未成熟混凝土不受冻胀破坏,在负温条件下能够继续水化

         采取掺用引气剂,引气不仅在表面无冰时减轻大体积冰诱导冰冻的出现,并且在过程中也减轻了冰挤出的损害,消纳更多的毛细孔中冰冻所产生的多余体积,有助于保护成熟混凝土免于伤害

         配合比设计采取高效减水剂尽量降低水灰比并经过充分水化,就有可能做出实际上不包含可冻水的饱和混凝土构件

    不包含毛细水(或数量很少)的混凝土构件,由于凝胶中空间极微细,结晶的始发十分困难,并不发生冻结,故施工中尽量不使用粉煤灰作为外掺料加入混凝土

         选用岩石吸水率较低(如重量吸水在0.5%以下的岩石),可冻水极少,骨料表现安全,不受冰冻伤害,同时使用小颗粒石粒可以得到较大抗冻性保证

       引起了世界各国的高度重视

    根据国际能源热泵组织(IEAHeatPumpCentre)和欧洲热泵协会(EHPA)统计的资料表明,目前欧洲有450万台热泵用于住宅,150万台热泵用于第三产业,2.5-3万台热泵用于工业

    EHPA的目标是到2010年在欧洲至少有1500万台热泵用于住宅,这相当于ÿ年节省100TWh的能源和减少4000万吨的CO2的排放

    至2002年瑞士热泵在新住宅的占有率超过1/3,日本建筑物的热泵占有率达到20%,而我国热泵的应用在1990年之后才得到了迅速发展,至1997年已安装1140万台,而且呈迅速发展的势头

         我国的城市中心区域正在逐步禁止使用燃ú锅¯,燃油锅¯的使用也正在受到一定程度的限制,这样就给热泵机组的应用提供了巨大的发展空间

    热泵机组主要分为空气能热泵和水源(地源)热泵,由于空气能热泵受环境、气候的影响较大,其应用受到了很大程度限制,而地下水温度冬夏变化不大,因此以地下水做冷热源的水源热泵系统使这一问题得到了有效的解决

    它以耗能少,利用可再生能源,不消耗水资源,不污染环境,符合可持续化发展的要求等诸多优势受到社会各界的广泛欢迎

         水源热泵的现状     水源热泵应用的最大问题在于要结合实际情况,提供一个稳定的水源,同时要解决地下水的回灌问题以及冬季如何最大限度的利用水中所蕴藏的能量

    目前此类工程的应用一般采取自然回灌,由于自然回灌只是重力做功,而取水是动力做功,要维持水系统的平衡,确保取出的水全部回灌,取水井与回灌井数比例一般采取1:2或2:3

    这不仅增加投资,而且在部分负荷时回灌井利用率低

    因此能否解决既要减少投资,又能节约运行费用,同时保证100%回灌问题,将直接关系到水源热泵的应用与发展

    因此研究开发一种节水、高能效比的水源热泵机组有助于水源热泵的应用与推广,并且会具有很好的市场前景

         节能型水源热泵机组     为了克服热泵工况增大传热温差所带来的诸多技术问题,我们在机组的结构上进行了研究与探索

    其结构是机组采用两个小型蒸发器,ÿ个蒸发器与一台或几台压缩机及冷凝器、膨胀阀等组成各自独立的制冷循环系统

    两个蒸发器的进出水管之间通过阀门控制来实现两个蒸发器水系统的串联或并联

    夏季制冷工况运行时两个蒸发器水管之间的阀门打开,空调末端系统的回水分两·同时进入两个蒸发器,在蒸发器的出口合流后进入空调末端,也就是说冷水并联流过两个蒸发器

    系统的冷量是通过两个蒸发器实现的,ÿ个蒸发器的进出口水温都是12/7℃(进出水温差Δt=5℃);冬季热泵工况运行时,两个蒸发器水管之间的阀门关闭,作为热源的地下水依次流过两个蒸发器,也就是说两个蒸发器的水串联,作为热源的地下水通过两个蒸发器来实现Δt=10℃的温降

    与水并联流过蒸发器相比,串联时水流过蒸发器的流通面积减小,弥补了水流量减小对流速的影响,这样流经ÿ个蒸发器的水流量、流速与夏季工况运行时一致,对传热性能的影响较小,既达到了节约地下水的目的,又不影响换热性能

         工程应用实例     以下是某单λ办公¥应用本新型节能水源热泵机组作为冷热源的设计实例:办公¥建筑面积:4600m2,室内末端采用嵌入式风盘,经计算需要的冷负荷Q0=460kW,需要的热负荷Qh=506kW

    水源条件:单井水量50~60m3/h,水温:夏季16℃,冬季15℃

    选用四台40HP半封活塞压缩机,ÿ两台压缩机与一台蒸发器、一台冷凝器组成两个独立的系统

         设计工况:制冷工况:蒸发器1、2水系统并联,氟系统独立,其进出水温度12/7℃,蒸发温度2℃;冷凝器1、2水系统并联,氟系统独立,其进出水温度16/26℃,冷凝温度31℃

    制热工况:蒸发器1、2水系统串联,氟系统独立,蒸发器1进出水温度15/9.5℃,蒸发温度5.5℃;蒸发器2进出水温度9.5/5℃,蒸发温度1℃;冷凝器1、2水系统并联,氟系统独立,其进出水温度40/45℃,冷凝温度50℃

         计算结果如下:①制冷工况:系统总制冷量:Q0=466kW,系统总功率:Pi=89.5kW,系统制冷系数:Cop=5.2,井水(水系统并联)取水量:47.2m3;②热泵工况:系统总制热量:Qk=511kW,系统总功率:Pi=121.7kW,系统制热系数:Cop=4.2,井水(水系统串联)取水量:34m3

    经过一个冬季和夏季的运行结果表明,在当地水源条件下两口井就可以实现机组安全可靠运行,制冷及制热效果完全满足用户的要求

    减少了初投资和运行费用,收到了很好的经济效益

         结论     采用此结构使蒸发器的进出水无论是在制冷时的5℃温差,还是在制热时的10℃温差,蒸发器的换热性能基本一致,也就是说蒸发器的换热面积在冬、夏两种工况下得到了充分利用

    同时热泵工况运行时,水量减少20%,系统的制热量提高了10%左右,Cop提高了7%左右

         综上所述,通过改进热泵机组的结构,改变蒸发器水系统的串联与并联,既实现了节约地下水的取水量,减少取水井与回灌井的数量,又合理使用了蒸发器的换热面积,同时提高了系统的制热量及能效比

    这样既减少了初投资,又降低了运行费用,具有显著的经济效益和社会效益,对水源热泵在我国的应用与发展将起到推动作用

    

央企信托-169江苏FN政信集合资金信托计划

文章版权及转载声明

作者:linbin123456本文地址:http://ccbca.org.cn/zhengxinxintuo/51564.html发布于 2023-07-11
文章转载或复制请以超链接形式并注明出处城投定融网

阅读
分享