

添加微信好友, 获取更多信息
复制微信号
省会城市平台发行+AA评级主体担保+足额应收债权覆盖
规模:¥20000万元
期限:12个月;
付息方式:自然季度末20号付息;
预期年化收益:
30万元(含)-50万元 9.0%
50万元(含)-100万元 9.3%
100万元(含)-300万元 9.6%
300万元(含)及以上 10%
备注:超过合同内预期收益率部分,当期打款成立后一次性补足;
资金用途:用于鹤壁市乡村振兴PPP项目建设及补充甲方流动性资金。
【发行人】郑州市xx成立于1992年,注册资金3亿元人民币,资产规模52.5亿元,是一家具有国家施工总承包壹级资质、桥梁工程专业承包壹级资质、市政公用工程总承包贰级资质和房屋建筑工程总承包叁级及对外承包资质的大型国有企业,公司实际控制人为郑州市财政局。
【增信措施】
1、担保人郑州xx集团有限公司提供不可撤销连带责任保证担保。担保人成立于2003年,注册资金4.557亿元,是市政府从事公路、桥梁建设经营活动的投资主体,总资产规模约224亿元,主体信用评级为AA,公司实际控制人为郑州市财政局。
2、发行人以其对郑州路桥建设投资集团有限公司足额应收债权所成立信托产品收益权为本产品进行转让担保,转让期限至信托产品履行期限届满止。
3、担保人对本次融资所转让应收账款确权,并出具确认函。
【项目亮点】
1、本项目发行人和担保人均为国有独资企业,隶属于郑州发展投资集团有限公司【主体信用评级AA+】,实际控制人为河南省郑州市财政局。
2、发行人提供足额应收债权成立的信托产品收益权为产品进行转让担保,安全边际高。
3、郑州市地处河南省中北部,系河南省辖地级市、省会和特大城市,《促进中部地区崛起“十三五”规划》明确支持建设中的国家中心城市。是全国公、铁、航、信兼具的交通枢纽,截止2022年末,郑州市人口数量约1282万人,实现地区生产总值1.29万元,其中一般公共预算收入完成1130.8亿元。
信托定融政信知识:
为中国国民经济、人民生活和生态环境创造了稳定的大环境
中国政府、党中央非常重视水利发展,2012年中国水利施工项目20 501个,投产10 282个项目,累计完成投资89 059 580万元,年完成投资39 642 358万元,其中中央政府投资 20 332 106万元
目前,中国累计达标堤防长达 177 490 km,共有水库97 543座,库容82 551 777万m3,保护耕地面积约2 840万hm2,保护人口56 566万人
中国水资源状况异常复杂,导致了对水利工程项目的大量需求
中国水利工程项目的大力发展需要国家、政府做出科学的决策,投入大量的人力、物力和财力
中国的水利工程项目有着前期评估不足、中期管理不完善、后期运营不到位的情况,导致很多工程年久失修,没有产生预期的作用
所以,对水利工程项目展开合理的绩效评价,总结经验教训,为以后的类似项目提供借鉴和参考,提高管理、决策水平,是十分必要和重要的
本研究旨在通过对水利工程项目、项目绩效评价相关理论与方法的研究,构建全方位、全生命周期的中国水利工程项目绩效评价模型以评估其投入、产出以及后期效益,以期为水利工程项目实践提供参考
1 水利工程项目绩效评价指标体系 水利工程项目绩效评价包含对过程和结果的双重评价
综合相关研究成果构建水利工程项目绩效评价指标体系见表1
2 结构方程模型简介 结构方程模型(Structural equation modeling, SEM)是一般线性模型的扩展
近十年来由于社会科学、行为科学的发展,传统的统计分析方法逐渐难以满足日益复杂的研究课题
而结构方程模型因其实用性被广泛应用于社会科学的研究之中,被誉为“第二代多元统计方法”【1】
它具有允许自变量存在误差【2】及多个因变量存在【3】的优点
结构方程模型包含两部分,测量模型与结构模型
测量模型是用显变量构建潜变量的方程模型,其中潜变量(Latent variable,又称结构变量)是不可直接测量的变量,如经济效益;显变量又称观察变量(Manifest variable),是可以直接测量的指标,如国内生产总值指标、工业产值指标等,用于衡量不可测量的潜变量
结构模型则构建了潜变量与潜变量之间的关系
测量模型的方程式如式(1)、(2),结构模型的方程式如式(3)
X=Λxξ+δ (1) Y=Λyη+ε (2) η=Bη+Γξ+ζ (3) 式中各变量的解释见表2
根据参数估计方法的不同,结构方程模型又可分为CB-SEM(基于方差-协方差分析)和PLSPM(基于偏最小二乘法)两种类型【4】
PLSPM的参数估计法不是基于普通最小二乘法,而是偏最小二乘法,这种方法对样本量、数据的分布没有严格的假设条件,允许数据不服从正态分布,适合理论基础较弱的研究
鉴于本研究样本数据也不服从正态分布,本研究选择PLSPM作为模型基础,以偏最小二乘法作为模型的分析与检验方法
基于PLSPM结构方程模型构建的水利项目绩效评价模型如图1所示
3 实证分析 3.1 数据来源与处理 本研究以中国31个省、市的水利工程项目作为研究对象,选取这31个省、市2008-2012年的相关数据,数据主要来源于《中国统计年鉴2009-2013》、《中国水利年鉴2009-2013》和《中国环境统计年鉴2009-2013》,具有较高的可信度、客观性和公正性
获取数据后,用SPSS20.0对其进行初步处理与分析,然后运用Smart-PLS2.0软件对构建的水利工程项目绩效评价模型进行运算
针对原始数据,首先对其进行无量纲化处理
本研究选取的指标分为效益型指标和成本型指标两种
对于效益型指标,分析标准是越大越好(如GDP、居民总收入、就业人数等指标);而对于成本型指标,评价标准是越小越好(如废水排放总量、洪涝灾害直接经济损失、旱灾面积等指标)
所以,为了使水利工程项目效益的测度更加科学规范,首先对成本型指标进行正向化处理【5】
3.2 模型检验 1)信度检验
信度检验指标为平均方差提取值指标(AVE)和复合信度指标(CR)【6】,检验标准为AVE>0.5,CR值>0.7【7】
检验结果见表3
2)效度检验
效度检验包括收敛效度检验和区别效度检验
收敛效度检验的判断准则为:factor loadings>0.7,低于0.4的观测指标应剔除
模型区别效度的判定标准为:各潜变量AVE的开根号值大于它与其他潜变量之间的相关系数【8】
各观察指标的因子载荷系数见表4,各潜变量相关系数见表5
3.3 评价结果与分析 各潜变量之间的路径系数见表6
其中: ξ1项目投入对η1项目产出的路径系数为0.807 9,这意味着中国水利工程项目的投入与其产出之间呈强正相关关系

郑州路桥财产权信托信托份额2023年转让项目