本文作者:linbin123456

河南新乡牧野发展2023年应收账款债权项目

linbin123456 2023-09-11 130
河南新乡牧野发展2023年应收账款债权项目摘要: 河南新乡牧野发展2023年应收账款债权项目百分百政府控股+区域首发+超低负债率+非标存续为0!+超强区位发展优势+强势双担保!【预期年化收益率】:12个月/24个月 10万及以上...
微信号:18321177950
添加微信好友, 获取更多信息
复制微信号
河南新乡牧野发展2023年应收账款债权项目
百分百政府控股+区域首发+超低负债率+非标存续为0!+超强区位发展优势+强势双担保!
【预期年化收益率】:
12个月/24个月 10万及以上 8%
【资金用途】:用于补充流动资金等。
【付息方式】自然季度付息!
【成立日】本产品打款当日成立计息!
【项目优势】:新乡市是郑州都市圈重要的组成部分、豫北地区首批国家公路运输枢纽城市,市全国文明城市、国家卫生城市、国家园林城市、国家森林城市、国家知识产权示范城市、全国农村改革试验区、郑洛新国家自主创新示范区。2021年,新乡实现地区生产总值3232.53亿,总量居河南省第六位,同比增长6.6%。一般公共预算208.28亿,负债率16.8%,负债率极低,区域发展迅猛。新乡市牧野发展管理有限公司是新乡市牧野区最主要的投融资和基础设施建设平台。
【增信措施】:1.不低于5000万应收账款质押足额覆盖,债务方确权回购!
2.双担保新乡市xx公司、河南精工绿xx业园有限公司安全系数高,还款能力强。
【发行方介绍】:新乡市牧野发展管理有限公司系新乡市牧野区人民政府全额100%出资成立的一家国有独资企业。公司承担牧野区政府公共设施和基础设施、棚户区改造投资建设。公司为牧野区政府授权的棚户区改造项目的国有建设主体单位,在牧野区具有垄断地位。截止2022年底,公司总资产近百亿,发债率不超过50%,主体信用评级准AA。

无关内容:

该桥由旧石拱桥和两侧新加宽桥组成

    旧石拱桥净跨20m,全长32.80m,桥宽7m,桥高8.9m,矢跨比1/4,拱圈采用7.5号砂浆砌筑粗料石,厚度85cm.桥台采用5号砂浆浆砌块石

    桥台两侧为5号浆砌块石挡土墙,台后填筑当地的土石混合料,旧石拱桥于 1967年建成通车

    两侧新加宽桥板拱为砼,于1999年12月建成通车

         旧拱桥经运营30多年后,在桥梁检测中发现下述病害:靠南平台起拱线处拱圈有多处微裂缝并伴有严重渗水现象;靠顺昌台处拱圈沿纵向有3条裂缝,缝宽在8~15mm;顺昌台台身也出现多条裂缝,其中一条裂缝贯穿整个台身并延伸至拱圈

    经过观测,发现裂缝每年有所发展,2001年的检测记录比照1999年的检测记录,其裂缝延长发展了2.3m,缝宽也增大了 2~3mm.拱顶渗水严重,行车道下沉2~5cm.两侧新加宽桥没有发现病害,旧拱桥综合评定为危桥,急需采取技术措施进行加固或重建

         2 病害成因及加固方案的选定     经对溪口中桥病害的分析,认为裂缝产生的原因是多方面的,但其主要成因有4个:其一,旧拱桥建于60年代末,由于台后填土范围小,填土又很高,压实机械无法到位,小型机具又达不到压实效果,填土压实度不够,土压力较大

    由于在高填土下,拱桥台身主要承受的荷载是填土自重和土压力,汽车活载效应较小,若填土压实不足,土体本身形不成自拱,台身势必形成较大的土压力,使桥台台身及基础产生推移,引起开裂

    其二,旧拱桥基础采用打梅花型松木桩处理,由于地基承载力不足,产生了不均匀沉降

    其三,拱圈、桥台砌筑工艺差,砌体砂浆不饱满,石料强度规格不符合设计要求,台身部分片石被压碎破裂

    其四,国道上交通量日益增大,车辆超载也随着增加,重车荷载有增无减地继续作用,势必使拱圈在许多局部呈现单个或少数构件受力集中现象,全断面受力甚不均匀,也是造成病害的重要原因

         根据316国道交通流量大、又不能中断交通的特点,分别拟订了3个方案进行经济技术比较

    方案一:在现桥的右侧建造一座新桥,但因造价高,且路线不顺畅,对行车不利而否定;方案二:拆除现有旧拱桥,利用原桥台,改建成梁桥

    但由于不能中断交通须先建通车便桥,再拆老桥,这就增加新建便桥费用,造价大、工期长;而且此方案其台后土压力仍然对桥台产生作用,且对两侧加宽桥也会造成影响,因此也不可行;方案三:即对现有拱桥实施衬砌加固方案,即在现有的石拱桥下加固一个钢筋混凝土的套拱,河底做成仰拱形式

    其理由及优点为:(1)该桥桥下为山区溪流,不通航,汇水面积不大,溪流纵坡大,排水迅速,经向当地群众了解,套拱后也不影响其排水;(2)可以不中断交通,在桥下施工,现场施工管理也简单;(3)造价低

         3 加固改造设计方案要领     (1) 裂缝注浆封闭:由于该桥拱圈多处开裂,部分裂缝已贯穿整个台身,为防止裂缝进一步发展,先采用高压灌浆法对缝隙进行封闭补强,然后再进行下一步加固

         (2)拱圈衬砌加固:该桥从病害成因及现状分析,若只采用高压灌浆进行加固,考虑到桥梁台身及拱圈开裂严重,地基承载力不足,灌浆后桥台及拱圈仍无法达到设计强度,还将存在较大隐患,所以采用内壁现浇钢筋混凝土拱圈的永久性加固方案

    即在原石拱圈腹内布锚杆,使石拱圈与钢筋混凝土拱圈构成复合式拱圈,通过复合式拱圈增强砖石的抗弯拉应力和整体刚度

    本着造价经济、满足承载要求以及衬砌后拱桥过水断面积仍能满足泄洪要求的原则,钢筋混凝土拱圈厚度采用40cm厚进行设计

         (3)河床仰拱衬砌:除对拱圈、台身进行套拱衬砌加固外,河床特别做成仰拱形式衬砌加固,其作用是:①仰拱可以使桥梁整体的承载力得到提高;②仰拱可以减少桥梁的周围位移;③仰拱可以克服桥台基础承载力不足;④仰拱可以使偏心受压向轴心受压转变;⑤仰拱可以改善桥梁整体受力

         4 施工技术要点     4.1 裂缝处理     对原桥的拱圈及桥台前墙裂缝进行钻孔压浆处理,增加原石拱桥的整体强度

    沿台身及拱圈裂缝,每隔100cm钻压浆孔,拱圈钻孔深均为60cm,桥台前墙钻孔深度根据墙厚而定

    压浆前先将裂缝凿成V形槽,在槽面上涂一层1.5cm的环氧树脂,再抹水泥砂浆封堵,待砂浆形成强度结硬后,用灰水比1:0.5、压力为0.6~0.8MPa的水泥浆在压浆孔处进行压浆,压浆管的长度贯穿整个构造物,压浆时邻孔为排气孔,在排气孔冒出同浓度浆液后即对压浆孔和排气孔进行堵塞

    压浆时应采用自下而上的顺序施工,同时压浆时还需考虑到台腔渗浆

         4.2 套拱施工     (1) 在旧拱圈内进行C25钢筋砼拱下套拱加固,原拱圈与套拱之间用φ20锚固钢筋联结,拱圈上锚杆长75cm,嵌入拱圈40cm,桥台前墙上锚杆长85cm,嵌入墙体50cm,均采用梅花型布设,并用1:1水泥浆加膨胀剂灌注,锚杆应与套拱钢筋网焊接成整体

         (2) 在仰拱底下铺50cm厚砂砾层,分层填筑夯实后,即绑扎仰拱的钢筋骨架,浇注混凝土

          (3) 现浇两侧台身

    浇注前锚杆还应与衬砌钢筋网焊接,台身钢筋应与仰拱钢筋骨架焊接在一起,混凝土浇注时,应加强震捣

         (4) 浇注拱圈混凝土

    由于拱圈混凝土厚度只有40cm,绑扎钢筋、填料及震捣较困难,因此采用泵送混凝土分段浇注(每2m为一段),混凝土应从两侧拱脚向拱顶延伸,并及时震捣夯实

    浇注完毕后喷水养生,强度达到设计标号的80%以上时方可拆除模板

         5 结语   采用钢筋混凝土套拱对石拱桥进行加固,具有省时、省钱、工艺简单、不中断交通等诸多优点,恢复了原来的设计标准,使危桥得到改善

    通过3年多的运营,经详细检测,技术状况良好,未发现任何不良变化,达到了预期效果

河南新乡牧野发展2023年应收账款债权项目

     省道S225线石拱桥加固施工方案 水口大桥位于省道S225线,中心桩号K93+537.65,于1969年10月建成通车,设计荷载为汽-13,拖-60,上部结构为料石拱,4跨53.75 m,桥L为256.35 m,桥b为9 m,行车道b为7m,下部结构采用沉井基础

       水口大桥由于桥龄较长,经过长时间的超负荷使用,特别是近几年超限、超载车辆的频繁通行,加速桥梁的损坏,又随着人类对森林保护,山岭水土流失逐渐减少,但由于基础设施建设及城市建筑的发展,河沙大部被涝走,随着洪水对泥沙的冲流,河床逐渐下降,大多数的桥梁基础局部普遍出现了基础淘空,裂缝等

    经过检测,水口大桥1 #、2# 、3 #桥墩基础沉井井壁有多处开裂,裂缝b为5-8 mm;河床下降,基础淘空外露等,腹拱有多处裂缝,桥面铺装原有沥青混合料严重老化、坏烂,桥栏损坏严重,直接影响到桥体安全,威胁着交通安全畅通

       1.加固方案   鉴于这是一座桥龄较长的料石拱桥,具有一定的历史价值,它的主拱结构良好,故加固方案是根据汽-20荷载标准及百年一遇洪水冲刷要求,对桥梁进行测算,由于该桥主拱是料石拱,而且拱圈完好,拱圈内力系按分项全系数的极限状态计算恒活载内力可以满足要求,故对主拱不动,根据采用该桥桥墩开裂、淘空现象,而且原有墩身较小,坩入的地下层仍为较软的粉砂岩,因此对1# 、2 #、3 #桥墩必须加厚即外包一层d为40 cm的C30钢筋混凝土,并在沉井基础周边加入6根为120 cm的桩基,桩基及原沉井基础上增设d为220 cm、沉井外b为200 cm的承台,与桥墩加固部分互相连接(沉井基础上d为40 cm),具体位置及形式见示意图

     【attachment=24431】   图为水口大桥1#  、2#  、3 # 桥墩的加固侧立面及平面图,其中阴影部分为加固层,单位cm,加固的承台b控制要素L1、L2、L3及桩深h随各墩的实际情况而不同,根据地质探测资料,结合桥梁承受荷载,以及洪水的冲击力等因素,要求1 墩基础需嵌入微风化砂砾岩至少1.5 m,加固的2 墩基础需嵌入微风化砂砾岩至少1.5m,加固的3 墩基础需嵌入微风化泥质粉砂岩至少8m,各桥墩基础尺寸(见表1): 【attachment=24432】    加固层布筋按桥梁实际受力及荷载标准计算布筋,主要如下:   (1)桥墩部分主要是在半圆内圈、外圈及直线连接均设置间距20 cmφ20 mm钢筋,内外圈筋由4根钢筋组成单面焊接,在原有沉井基础按40 cm×40 cm密度植入φ25 mm锚固筋,植入深度至少20 cm,在与承台上面的交接设立横向φ20 mm支撑筋,承台上部分(原墩基础以上40 cm)布置双层φ25 mm椭圆圈钢筋,层间距20 cm,另外还有竖立筋、平直连结椭圆筋等,间距20 cm

       (2)承台下部分(d为180 cm),底层两半圆及连接线布置间距20 cm的φ25 mm钢筋,在原沉井基础植入25 cm深的锚固筋,密度同上,另外还有架立筋,间距100 cm×100 cm,桩项布置双层面积为200 cm ×200 cm钢筋网,层间距50 cm,密度20 cm×20 cm等

       (3)桩基钢筋,按规范要求设立竖筋、箍筋及加劲箍筋,加劲箍筋每两米设一道,双面焊接,并沿加劲箍筋四周均匀绑扎四块10 cm×10 cm×6 cm的预制砼定位块

       对于桥面铺装原有沥青混合料严重老化、坏烂,桥栏损坏严重,采取拆除原桥面铺装层,改为C30混凝土铺装并设立混凝土防撞栏,腹拱圈开裂处灌浆修补等,改为C30钢筋砼铺装后,大大分散了桥面的集中受力,使主拱整体受力得到较大的提高

    发挥料石原有的坚固、抗压性强功能等特性

         2.方案分析   本方案对水口大桥的加固得到多位工程师及专家的认可,针对了原桥荷载等级低、墩基础开裂、露基等病害,在原桥墩周边增设承台,加固原有基础,巩固并提高了原有荷载,目前工程已接近完工,经过桥载检测,现在荷载已可达到汽-20,挂-100标准,桥墩基础可抗百年一遇洪水灾害

    特别是桥墩基础的加固,不光解决了原有沉井基础的开裂、露基等毛病,而且还提高了整桥的荷载能力,很好地利用了原料石拱桥固有的坚固、耐用的特点,同时,对石拱桥改设钢筋混凝土桥面铺装,可使主拱整体受力更均匀,减少因集中受力而发生局部破坏

    经过对该桥的加固维修,不但对桥的主体结构不影响,外观上,它依然是一座雄伟的古石拱桥,具有一定的历史文化意义

       3.结束语   危桥加固是当前我国的一项重大任务,多数桥梁是修建在60-70年代,当时的设计荷载普遍较低,使用通行要求也较低,经过几十年的使用、洪水的冲击及超重、超限车辆的频繁通行,普遍出现或多或少的毛病,对这些桥梁的整修、加固已显得非常急切,也是确保公路安全畅通的保证

    因此如何利用旧桥进行加固、改造是一个重要课题,充分利用旧桥,可以节约资金,提高经济效益等,水口大桥的加固就是一个很好的例子,从而可实现达到延长旧桥的寿命,发挥其经济效益和社会效益的作用

       对下方建筑物的使用功能和安全性产生影响甚至造成严重危害

    控制上方卸荷对下方已有建筑物的影响以及合理选择控制地下建筑物位移的工艺,保证下方建筑物的正常使用,成为工程界急需解决的一个难题

       上海东方路下立交工程基坑开挖位于已运营的地铁隧道二号线之上

    在地铁隧道上方开挖宽达18m、深6.5m的深基坑工程,基坑坑底距隧道顶部的最近距离只有2.8m

    常规的大面积开挖不能满足地铁隧道的容许变形要求,故采用考虑时空效应的施工方法进行开挖

    基坑开挖必然引起下方建筑物的位移,下方建构筑物位移量的大小与许多因素有关,如:基坑卸荷量(开挖深度)、卸荷模量、开挖方式(时空效应)等等

    然而,下方建筑物所允许的位移量是非常小的

    我们从施工工艺上分析开挖卸载对下卧隧道的影响,并提出控制措施,取得了成功

       2工程概况   东方路下立交工程位于上海东方路、世纪大道和张杨路交叉口(见图1)

    下立交工程下方有已建及规划建设的3条轨道交通线穿过,自北向南依次为明珠线二期、地铁二号线及规划地铁R4线区间隧道(见图2)

    工程范围全长600m.其中N1、N2分段位于正在运营中的地铁二号线上方,施工过程中必须对地铁线进行保护

    运营地铁二号线隧道距地道底板最近处为2.8m,隧道大多位于④灰色淤泥质黏土中

    工程地质特性见表1

     表1   工程地质条件   3减小隧道位移的施工控制措施   3.1加固地基   为了确保下立交工程的施工安全,也确保运行中地铁二号线的安全,本基坑工程采用了水泥搅拌桩加固、三重管高压旋喷桩加固和双液注浆加固

    通过加固软弱地基,提高土体强度,防止土体液化,从而增加基坑的抗浮性能,提高基坑的稳定,减小坑底的回弹及下方隧道的隆起变形

       ③-1层为灰色淤泥质粉质黏土,饱和,含水量50%,土质不均,③-2、③-3层为粉土和粉质黏土,土层也饱和,该三层土层正好在下立交底板的位置

    在施工期间,如果这三层土受到扰动或遇到水,极容易液化,进而引起基坑塌方,造成事故

    我们对这三层土也进行加固,注入了大量水泥浆,提高了土层的土体强度和密度以及回弹模量

       3.2施作搅拌桩   在隧道上方搅拌桩施工时,搅拌桩施工的卸荷量也受搅拌桩的水灰比和注浆量的影响,通过调整注浆量和控制水灰比可以调整卸荷量

    并且根据搅拌桩的挤土效应的力学模型,深层搅拌桩的挤土效应与贯入的“泥浆桩”的等效半径和桩长有关,控制注浆量和控制水灰比可以调整“泥浆桩”的等效半径,从而控制搅拌桩的挤土效应

       下行线隧道两侧分别连续施作了2根、6根、21根深层搅拌桩,其隧道隆起增量值见图3

    隧道隆起增量值随着连续成桩数量的增加呈现增加的趋势,但并不是线性增加,而是逐渐地减缓

    从图3可以看出,减少每次连续成桩数量,待打桩产生的孔隙水压力部分消散后继续进行深层搅拌桩施工是控制隧道隆起值的有效途径

       进行大面积深层搅拌桩加固时,在不同打桩条件下,上下行线底隆起值比较见图4

    下、上行线隧道实测值分别是在N1区、N2区(如图2)深层搅拌桩施工过程中,下(上)行线隧道的实测隆起值

    上下行线隧道隆起实测值相差如此大(其相对隧道位置、桩长、等效桩数相同)的主要原因是下行线隧道边加固采取了下列措施

       (1)充分利用遮拦效应   由于在下行线隧道外侧已经打了一排遮拦桩,遮拦桩施工完毕到靠近遮拦桩的深层搅拌桩施工已有20d左右的时间,遮拦结构达到了比较高的强度,水泥土和型钢形成一个整体,能承受一定的水平荷载;而上行线隧道外侧的遮拦桩施工完毕到靠近遮拦桩的深层搅拌桩施工只有3d,水泥土还远没有达到强度,其遮拦效果不好

       (2)控制连续成桩数量   N1区的深层搅拌桩每天施工7~14根,共施工了11d,而N2区相同桩数的深层搅拌桩只施工了3d,几乎是连续施工

    由于隧道的变形主要是由深层搅拌桩施工产生的孔隙水压力引起,N1区搅拌桩的施工速度很慢,先前打桩产生的部分孔隙水压力已经消散,因而隧道的隆起值较N2区施工时的小得多

    N2区的深层搅拌桩几乎是连续成桩,其产生的超孔隙水压力来不及消散,隧道隆起较大

       (3)隧道上方加固   在地铁隧道两侧进行抗拔桩施工前,先在隧道上半圆环圈采用双液注浆加固,双液注浆厚度1m.双液分别为A液和B液,A液为水∶水泥∶膨润土∶外掺剂=0.7∶1.0∶0.03∶0.03,水泥采用42.5普通硅酸盐水泥;B液为水玻璃;A液∶B液=1∶1

       地基加固的作用:首先,增大土体的C、φ值,增大土体的弹性模量,使得基床系数k增大,进而使得隧道纵向弹性特征值增大,从而隧道的变形减小;其次,加固体形成的整体性很好的空间厚板体系,在打桩产生挤土作用时,增大土体对隧道的约束,从而可以有效地限制隧道的隆起

       合理安排打桩顺序,先在地铁隧道上方进行地基加固,然后打靠近隧道的深层搅拌桩(内插型钢)作为遮拦结构,利用先打桩自身的遮拦作用,可以减小隧道的隆起值

       在N1区施工之前,在隧道上半圆环圈采用双液注浆加固,加固已有25d左右的时间,而在N2区深层搅拌桩施工前,下行线隧道上方没有进行加固

    隧道上方加固提高土体的强度,增大了土体对隧道的约束,从而可以有效地限制隧道的隆起

       从图4中可以明显看出,采取上述打桩措施具有很好的效果,可以减小搅拌桩施工引起隧道的变形

       3.3基坑土体分层、分条开挖   基坑开挖前对施工范围内土体(包括坑内土体、坑底土体及隧道周边土体)进行加固,使土体具备自立性,以利土体开挖

    待坑内土体、坑底土体及隧道周边土体、卸载抗拔桩达到设计强度(底板以上土体强度达到1.0MPa,底板以下土体强度达到1.2MPa)后才进行开挖

    N1、N2两个基坑均长约26m,宽18.1m,与地铁二号线近于垂直,出于保护地铁线,不能按照常规方法进行土方开挖,必须考虑分层、分小段、分条开挖

       (1)分层开挖   基坑深达6.5m,不应一次开挖到底,一次大面积卸荷会使得地铁隧道的回弹量过大,超过地铁保护的要求限制

    对于N1段,因为加固的时间相对较短,坑内土体的强度相对较小,故分4层开挖,上面的3层(D1、D2、D3)采用整体挖除(图5),下面的一层分条开挖

    破土削掉0.5m土层D1,监测数据在控制范围以内再挖D2层,D2层厚1m,地铁隧道回弹量为0.75mm,而后挖D3,D3层厚2m,地铁隧道回弹量为1.98mm,很明显,大面积卸荷时,卸荷量对地铁隧道的影响非常的大

    N2段一方面由于土体加固的时间相对较长,坑内土体的强度也就相对较大,另一方面受实际的施工条件和工期的限制,决定分三层开挖(图6),一二两层为一次性挖除,第三层分条开挖,相应调整了每层开挖土体的厚度,监测结果显示地铁隧道的回弹量完全在控制的范围内

       (2)分条开挖   以前杨高路下立交开挖基坑的分条方式为土条的中线与地铁隧道基本平行,开挖时地铁隧道的回弹较大

    本工程施工中,为减小各条土体开挖对地铁隧道的影响,基坑土条与隧道成斜交,如图7所示,基本垂直

    这种分条方式相当于土条中只有一部分土体开挖会对隧道回弹产生较大的影响,同杨高路下立交相比,相当于减小了地铁隧道上部的卸荷量,从而使得隧道的回弹量小些

         (3)加设支撑   为了减少基坑暴露时间,按照设计要求,土方开挖分段、分层、分小段,并限时完成每小段的开挖、开挖后加支撑1~2道,纵向间距4m.   3.4监测及信息化施工   隧道上方的基坑开挖是高风险性工程,下立交通道底离运营地铁隧道顶最近只有2.8m,运营地铁隧道的变形控制要求极高,因此跟踪监测十分重要

    东方路下立交工程中采用了自动监测系统,进行信息化施工技术

       地基加固和基坑开挖期间,根据大量的监测数据,利用理论和数值反分析工具预测预报下一步施工引起隧道位移,随时掌握隧道位移情况,及时预报施工中出现的问题,信息化指导施工

       4控制效果   在东方路下立交工程的施工过程中,紧密结合工程,提出基坑施工对下方运营地铁隧道变形的控制方法,解决了隧道上方近距离基坑开挖的施工这一国内外罕见的技术难题,成功地将运营地铁隧道的位移控制在20mm之内

    运营地铁隧道下行线最终隆起12.25mm,上行线最终隆起11.79mm,确保了地铁的运营安全

    

河南新乡牧野发展2023年应收账款债权项目

文章版权及转载声明

作者:linbin123456本文地址:http://ccbca.org.cn/zhengxinxintuo/63483.html发布于 2023-09-11
文章转载或复制请以超链接形式并注明出处城投定融网

阅读
分享